| 
        커뮤니티
     | 
        Python/TensorFlow
     
    
    
        |  | 
                
                    |  | 1007   김윤중  |  |  |  
        |  | Agenda 
	Generate dataset of face/face with mask images, using 68 landmark detection.Agender(age gender) model  building for face/face with mask Train agender modelCreate application of agender model. Summary of estimation models of age and gender 
	https://github.com/diovisgood/agendersamples
	
		Accuracy
		
			ResNet50 by Youness Mansar    link    link    MIT    Keras/TensorFlow    224x224x3    gender: one number, age: 8 classes    ~100Mb    NOConvNet by Sefik Ilkin Serengil    link    link    unspecified    Keras/TensorFlow    224x224x3    gender: 1 number, age: 101 class    553Mb, 514Mb    YESConvNet by Chengwei Zhang    link    link    unspecified    Keras/TensorFlow    64x64x3    gender: 1 number, age: 101 class    186Mb    YESConvNet by Yusuke Uchida    None    link    MIT    Keras/TensorFlow    32x32x3    gender: 1 number, age: 101 class    187Mb    YES Real time
		
			SSR-Net (original)    link    link    Apache License 2.0    Keras/TensorFlow    64x64x3    gender: one number, age: one number    0.32Mb    YESConvNet by Gil Levi and Tal Hassner    link    link    as is    Caffe    256x256x3    gender: 2 classses, age: 8 classes    43.5Mb, 43.5Mb    YESSSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation
		
			by Tsun-Yi Yang, Yi-Hsuan Huang, Yen-Yu Lin, Pi-Cheng Hsiu, Yung-Yu Chuang.Source code: https://github.com/shamangary/SSR-NetThird party source code: https://github.com/shamangary/SSR-NetLicense: Apache License 2.0Framework: Keras/TensorFlowInput: RGB images 64x64x3Output:
			
				gender: one number in range [0..1], where 0 = Female, 1 = Male.age: one numberModel weights size:
			
				gender: 0.32 Mb,age: 0.32 Mb,Pre-trained model available: YESLast models update: Apr 2018   Agender Project for the real-time estimation of age and gender 
	A small demo project to try and test OpenCV library and also implement on-the-fly face detection, age and gender estimation using pre-trained models. https://github.com/diovisgood/agenderused two such models for real-time estimation of age and gender using only average CPU:
	
		SSR-Net by Tsun-Yi Yang, Yi-Hsuan Huang, Yen-Yu Lin, Pi-Cheng Hsiu, Yung-Yu Chuang.ConvNet by Gil Levi and Tal Hassner.processes
	
		Get a smaller resized frame. As it is faster to process small images and this merely does not affect quality.Find faces/faces with mask on a small frame .
		
			HARR
			
				face_cascade = cv.CascadeClassifier('face_haar/haarcascade_frontalface_alt.xml') gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
 detections = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
trained cnn
			
				face_net = cv.dnn.readNetFromTensorflow('face_net/opencv_face_detector_uint8.pb', 'face_net/opencv_face_detector.pbtxt')blob = cv.dnn.blobFromImage(img, 1.0, (300, 300), mean=(104, 117, 123), swapRB=True, crop=False)
 face_net.setInput(blob)
 detections = face_net.forward()
Use faces coordinates of a small frame to extract faces patches from original (big) frame.Convert and adjust faces patches to a format that model expects. Construct a blob with all faces.Pass a blob of faces through model(s) to get predicted genders and ages for all faces.
		
			SRR net
			
				gender_net = SSR_net_general(face_size, stage_num, lambda_local, lambda_d)()gender_net.load_weights('age_gender_ssrnet/ssrnet_gender_3_3_3_64_1.0_1.0.h5') blob = np.empty((len(faces), face_size, face_size, 3))genders = gender_net.predict(blob)ages = age_net.predict(blob)ConvNet by Gil Levi and Tal Hassner with Caffe
			
				blob = cv.dnn.blobFromImages(faces, scalefactor=1.0, size=(227, 227),mean=(78.4263377603, 87.7689143744, 114.895847746),
 swapRB=False)
gender_net.setInput(blob)genders = gender_net.forward()age_net.setInput(blob)ages = age_net.forward()Draw a rectangle around each face and a label with estimated gender and age.   |  |  
        |  |  |  |  
        |  | 
 |  |  
        |  | 
 |  |  
        |  |  |  |  
        |  |  |  |  
 |